Pin assignment Overview Connection Function X1 EtherCAT IN X2 EtherCAT OUT X3 Voltage supply X4 Inputs/outputs and external logic supply L1 Power LED, see chapter Power LED RUN EtherCAT RUN LED, see chapter EtherCAT LEDs ERR EtherCAT ERROR LED, see chapter EtherCAT LEDs LINK EtherCAT LINK LED, see chapter EtherCAT LEDs Note: All pins with designation GND are internally connected. X1 − EtherCAT IN Connection for EtherCAT. Type: M12, 4-pin, D-coded, female Suitable Nanotec cable: ZK-M12-4-2M-1-D-RJ45 (not included in the scope of delivery) Pin Function Note 1 TD+ Transmission Data + 2 RD+ Receiver Data + 3 TD- Transmission Data - 4 RD- Receiver Data - X2 − EtherCAT OUT Connection for EtherCAT. Type: M12, 4-pin, D-coded, female Suitable Nanotec cable: ZK-M12-4-2M-1-D-RJ45 (not included in the scope of delivery) Pin Function Note 1 TD+ Transmission Data + 2 RD+ Receiver Data + 3 TD- Transmission Data - 4 RD- Receiver Data - X3 – voltage supply Connection for the main supply. Type: M12, 5-pin, B-coded, male Suitable Nanotec cable: ZK-M12-5-2M-1-B-S (not included in the scope of delivery) Voltage source The operating or supply voltage supplies a battery, a transformer with rectification and filtering, or a switching power supply. Note: EMC: For a DC power supply line longer than 30 m or when using the motor on a DC bus, additional interference-suppression and protection measures are necessary. ► An EMI filter is to be inserted in the DC supply line as close as possible to the controller/motor. ► Long data or supply lines are to be routed through ferrites. Pin assignment Pin Function Note 1 +Ub 12 - 48 V DC ±5% 2 +Ub 12 - 48 V DC ±5% 3 GND 4 GND 5 n.c. Not used Note: The minimum voltage for the variants of the motor with integrated holding brake (PD4-E591L42-EB… and PD4-EB59CD-EB…) is 22.4 V DC. Permissible operating voltage The maximum operating voltage is 50.4 V DC. If the input voltage of the controller exceeds the threshold value set in 2034h, the motor is switched off and an error triggered. Above the response threshold set in 4021h:02h, the integrated ballast circuit is activated (wirewound resistor Z32041412209K6C000 from Vishay with 3 W continuous output). The minimum operating voltage is 11.4 V DC (22.4 for variants with integrated brake). If the input voltage of the controller falls below 10 V (22.4 for variants with integrated brake), the motor is switched off and an error triggered. A charging capacitor of at least 4700 µF / 50 V (approx. 1000 µF per ampere rated current) must be connected to the supply voltage to avoid exceeding the permissible operating voltage (e.g., during braking). Note: Damage to the controller and/or its power supply due to excitation voltage of the motor! Voltage peaks during operation may damage the controller and possibly its power supply. ► Install suitable circuits (e.g., charging capacitor) that reduce voltage peaks. ► With BLDC motors: Select a voltage source that corresponds to the rated voltage of the respective motor as specified in the motor data sheet. ► Use a power supply with protection circuit to protect against overvoltage. Connector X4 - inputs/outputs and external logic supply Connection for the digital and analog inputs/outputs and the external logic supply. Connector type: M12, 12-pin, A-coded, male Suitable Nanotec cable: ZK-M12-12-2M-1-AFF (not included in the scope of delivery) Pin Function Note 1 GND 2 Digital input 1 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 3 Digital input 2 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 4 Digital input 3 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 5 Digital input 4 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 6 Digital input 5 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 7 Digital input 6 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 8 Analog input 10 bit, 0 V…+10 V or 0…20 mA, switchable by means of software with object 3221h 9 Digital output 1 Digital output, open drain, max. 24 V / 100 mA 10 Digital output 2 Digital output, open drain, max. 24 V / 100 mA 11 Voltage output +5 V, max. 100 mA 12 +UB Logic +24 V DC, input voltage for the logic supply, current consumption: approx. 39 mA Note: The windings of the motor are not supplied by the logic supply. In 4015h, you can activate the alternative function of the digital inputs, which is used for the special drive modes. See chapter Special drive modes (clock-direction and analog speed). If you set 3240h:07h to the value "1", three differential inputs are available instead of six single-ended inputs. The following table shows all possible combinations: Pin Basic function Alternative function Single-ended Differential Single-ended Differential 2 Input 1 - Input 1 Release –Enable 3 Input 2 / Direction input in clock-direction mode + Input 1 Direction Release 4 Input 3 / clock input in clock-direction mode - Input 2 / - Direction input in clock-direction mode Clock –Direction 5 Input 4 + Input 2 / + Direction input in clock-direction mode Digital input 4 Direction 6 Input 5 - Input 3 / - Clock input in clock-direction mode Digital input 5 –Clock 7 Input 6 + Input 3 / + Clock input in clock-direction mode Digital input 6 Clock The following switching thresholds apply for inputs 1 to 6: Max. Voltage Switching thresholds Switching on Switching off 5 V > 4.09 V < 0.95 V 24 V > 14.74 V < 3.78 V
Pin assignment Overview Connection Function X1 EtherCAT IN X2 EtherCAT OUT X3 Voltage supply X4 Inputs/outputs and external logic supply L1 Power LED, see chapter Power LED RUN EtherCAT RUN LED, see chapter EtherCAT LEDs ERR EtherCAT ERROR LED, see chapter EtherCAT LEDs LINK EtherCAT LINK LED, see chapter EtherCAT LEDs Note: All pins with designation GND are internally connected. X1 − EtherCAT IN Connection for EtherCAT. Type: M12, 4-pin, D-coded, female Suitable Nanotec cable: ZK-M12-4-2M-1-D-RJ45 (not included in the scope of delivery) Pin Function Note 1 TD+ Transmission Data + 2 RD+ Receiver Data + 3 TD- Transmission Data - 4 RD- Receiver Data - X2 − EtherCAT OUT Connection for EtherCAT. Type: M12, 4-pin, D-coded, female Suitable Nanotec cable: ZK-M12-4-2M-1-D-RJ45 (not included in the scope of delivery) Pin Function Note 1 TD+ Transmission Data + 2 RD+ Receiver Data + 3 TD- Transmission Data - 4 RD- Receiver Data - X3 – voltage supply Connection for the main supply. Type: M12, 5-pin, B-coded, male Suitable Nanotec cable: ZK-M12-5-2M-1-B-S (not included in the scope of delivery) Voltage source The operating or supply voltage supplies a battery, a transformer with rectification and filtering, or a switching power supply. Note: EMC: For a DC power supply line longer than 30 m or when using the motor on a DC bus, additional interference-suppression and protection measures are necessary. ► An EMI filter is to be inserted in the DC supply line as close as possible to the controller/motor. ► Long data or supply lines are to be routed through ferrites. Pin assignment Pin Function Note 1 +Ub 12 - 48 V DC ±5% 2 +Ub 12 - 48 V DC ±5% 3 GND 4 GND 5 n.c. Not used Note: The minimum voltage for the variants of the motor with integrated holding brake (PD4-E591L42-EB… and PD4-EB59CD-EB…) is 22.4 V DC. Permissible operating voltage The maximum operating voltage is 50.4 V DC. If the input voltage of the controller exceeds the threshold value set in 2034h, the motor is switched off and an error triggered. Above the response threshold set in 4021h:02h, the integrated ballast circuit is activated (wirewound resistor Z32041412209K6C000 from Vishay with 3 W continuous output). The minimum operating voltage is 11.4 V DC (22.4 for variants with integrated brake). If the input voltage of the controller falls below 10 V (22.4 for variants with integrated brake), the motor is switched off and an error triggered. A charging capacitor of at least 4700 µF / 50 V (approx. 1000 µF per ampere rated current) must be connected to the supply voltage to avoid exceeding the permissible operating voltage (e.g., during braking). Note: Damage to the controller and/or its power supply due to excitation voltage of the motor! Voltage peaks during operation may damage the controller and possibly its power supply. ► Install suitable circuits (e.g., charging capacitor) that reduce voltage peaks. ► With BLDC motors: Select a voltage source that corresponds to the rated voltage of the respective motor as specified in the motor data sheet. ► Use a power supply with protection circuit to protect against overvoltage. Connector X4 - inputs/outputs and external logic supply Connection for the digital and analog inputs/outputs and the external logic supply. Connector type: M12, 12-pin, A-coded, male Suitable Nanotec cable: ZK-M12-12-2M-1-AFF (not included in the scope of delivery) Pin Function Note 1 GND 2 Digital input 1 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 3 Digital input 2 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 4 Digital input 3 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 5 Digital input 4 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 6 Digital input 5 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 7 Digital input 6 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 8 Analog input 10 bit, 0 V…+10 V or 0…20 mA, switchable by means of software with object 3221h 9 Digital output 1 Digital output, open drain, max. 24 V / 100 mA 10 Digital output 2 Digital output, open drain, max. 24 V / 100 mA 11 Voltage output +5 V, max. 100 mA 12 +UB Logic +24 V DC, input voltage for the logic supply, current consumption: approx. 39 mA Note: The windings of the motor are not supplied by the logic supply. In 4015h, you can activate the alternative function of the digital inputs, which is used for the special drive modes. See chapter Special drive modes (clock-direction and analog speed). If you set 3240h:07h to the value "1", three differential inputs are available instead of six single-ended inputs. The following table shows all possible combinations: Pin Basic function Alternative function Single-ended Differential Single-ended Differential 2 Input 1 - Input 1 Release –Enable 3 Input 2 / Direction input in clock-direction mode + Input 1 Direction Release 4 Input 3 / clock input in clock-direction mode - Input 2 / - Direction input in clock-direction mode Clock –Direction 5 Input 4 + Input 2 / + Direction input in clock-direction mode Digital input 4 Direction 6 Input 5 - Input 3 / - Clock input in clock-direction mode Digital input 5 –Clock 7 Input 6 + Input 3 / + Clock input in clock-direction mode Digital input 6 Clock The following switching thresholds apply for inputs 1 to 6: Max. Voltage Switching thresholds Switching on Switching off 5 V > 4.09 V < 0.95 V 24 V > 14.74 V < 3.78 V
Overview Connection Function X1 EtherCAT IN X2 EtherCAT OUT X3 Voltage supply X4 Inputs/outputs and external logic supply L1 Power LED, see chapter Power LED RUN EtherCAT RUN LED, see chapter EtherCAT LEDs ERR EtherCAT ERROR LED, see chapter EtherCAT LEDs LINK EtherCAT LINK LED, see chapter EtherCAT LEDs Note: All pins with designation GND are internally connected.
X1 − EtherCAT IN Connection for EtherCAT. Type: M12, 4-pin, D-coded, female Suitable Nanotec cable: ZK-M12-4-2M-1-D-RJ45 (not included in the scope of delivery) Pin Function Note 1 TD+ Transmission Data + 2 RD+ Receiver Data + 3 TD- Transmission Data - 4 RD- Receiver Data -
X2 − EtherCAT OUT Connection for EtherCAT. Type: M12, 4-pin, D-coded, female Suitable Nanotec cable: ZK-M12-4-2M-1-D-RJ45 (not included in the scope of delivery) Pin Function Note 1 TD+ Transmission Data + 2 RD+ Receiver Data + 3 TD- Transmission Data - 4 RD- Receiver Data -
X3 – voltage supply Connection for the main supply. Type: M12, 5-pin, B-coded, male Suitable Nanotec cable: ZK-M12-5-2M-1-B-S (not included in the scope of delivery) Voltage source The operating or supply voltage supplies a battery, a transformer with rectification and filtering, or a switching power supply. Note: EMC: For a DC power supply line longer than 30 m or when using the motor on a DC bus, additional interference-suppression and protection measures are necessary. ► An EMI filter is to be inserted in the DC supply line as close as possible to the controller/motor. ► Long data or supply lines are to be routed through ferrites. Pin assignment Pin Function Note 1 +Ub 12 - 48 V DC ±5% 2 +Ub 12 - 48 V DC ±5% 3 GND 4 GND 5 n.c. Not used Note: The minimum voltage for the variants of the motor with integrated holding brake (PD4-E591L42-EB… and PD4-EB59CD-EB…) is 22.4 V DC. Permissible operating voltage The maximum operating voltage is 50.4 V DC. If the input voltage of the controller exceeds the threshold value set in 2034h, the motor is switched off and an error triggered. Above the response threshold set in 4021h:02h, the integrated ballast circuit is activated (wirewound resistor Z32041412209K6C000 from Vishay with 3 W continuous output). The minimum operating voltage is 11.4 V DC (22.4 for variants with integrated brake). If the input voltage of the controller falls below 10 V (22.4 for variants with integrated brake), the motor is switched off and an error triggered. A charging capacitor of at least 4700 µF / 50 V (approx. 1000 µF per ampere rated current) must be connected to the supply voltage to avoid exceeding the permissible operating voltage (e.g., during braking). Note: Damage to the controller and/or its power supply due to excitation voltage of the motor! Voltage peaks during operation may damage the controller and possibly its power supply. ► Install suitable circuits (e.g., charging capacitor) that reduce voltage peaks. ► With BLDC motors: Select a voltage source that corresponds to the rated voltage of the respective motor as specified in the motor data sheet. ► Use a power supply with protection circuit to protect against overvoltage.
Voltage source The operating or supply voltage supplies a battery, a transformer with rectification and filtering, or a switching power supply. Note: EMC: For a DC power supply line longer than 30 m or when using the motor on a DC bus, additional interference-suppression and protection measures are necessary. ► An EMI filter is to be inserted in the DC supply line as close as possible to the controller/motor. ► Long data or supply lines are to be routed through ferrites.
Pin assignment Pin Function Note 1 +Ub 12 - 48 V DC ±5% 2 +Ub 12 - 48 V DC ±5% 3 GND 4 GND 5 n.c. Not used Note: The minimum voltage for the variants of the motor with integrated holding brake (PD4-E591L42-EB… and PD4-EB59CD-EB…) is 22.4 V DC.
Permissible operating voltage The maximum operating voltage is 50.4 V DC. If the input voltage of the controller exceeds the threshold value set in 2034h, the motor is switched off and an error triggered. Above the response threshold set in 4021h:02h, the integrated ballast circuit is activated (wirewound resistor Z32041412209K6C000 from Vishay with 3 W continuous output). The minimum operating voltage is 11.4 V DC (22.4 for variants with integrated brake). If the input voltage of the controller falls below 10 V (22.4 for variants with integrated brake), the motor is switched off and an error triggered. A charging capacitor of at least 4700 µF / 50 V (approx. 1000 µF per ampere rated current) must be connected to the supply voltage to avoid exceeding the permissible operating voltage (e.g., during braking). Note: Damage to the controller and/or its power supply due to excitation voltage of the motor! Voltage peaks during operation may damage the controller and possibly its power supply. ► Install suitable circuits (e.g., charging capacitor) that reduce voltage peaks. ► With BLDC motors: Select a voltage source that corresponds to the rated voltage of the respective motor as specified in the motor data sheet. ► Use a power supply with protection circuit to protect against overvoltage.
Connector X4 - inputs/outputs and external logic supply Connection for the digital and analog inputs/outputs and the external logic supply. Connector type: M12, 12-pin, A-coded, male Suitable Nanotec cable: ZK-M12-12-2M-1-AFF (not included in the scope of delivery) Pin Function Note 1 GND 2 Digital input 1 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 3 Digital input 2 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 4 Digital input 3 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 5 Digital input 4 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 6 Digital input 5 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 7 Digital input 6 5 V / 24 V signal, switchable by means of software with object 3240h, max. 1 MHz 8 Analog input 10 bit, 0 V…+10 V or 0…20 mA, switchable by means of software with object 3221h 9 Digital output 1 Digital output, open drain, max. 24 V / 100 mA 10 Digital output 2 Digital output, open drain, max. 24 V / 100 mA 11 Voltage output +5 V, max. 100 mA 12 +UB Logic +24 V DC, input voltage for the logic supply, current consumption: approx. 39 mA Note: The windings of the motor are not supplied by the logic supply. In 4015h, you can activate the alternative function of the digital inputs, which is used for the special drive modes. See chapter Special drive modes (clock-direction and analog speed). If you set 3240h:07h to the value "1", three differential inputs are available instead of six single-ended inputs. The following table shows all possible combinations: Pin Basic function Alternative function Single-ended Differential Single-ended Differential 2 Input 1 - Input 1 Release –Enable 3 Input 2 / Direction input in clock-direction mode + Input 1 Direction Release 4 Input 3 / clock input in clock-direction mode - Input 2 / - Direction input in clock-direction mode Clock –Direction 5 Input 4 + Input 2 / + Direction input in clock-direction mode Digital input 4 Direction 6 Input 5 - Input 3 / - Clock input in clock-direction mode Digital input 5 –Clock 7 Input 6 + Input 3 / + Clock input in clock-direction mode Digital input 6 Clock The following switching thresholds apply for inputs 1 to 6: Max. Voltage Switching thresholds Switching on Switching off 5 V > 4.09 V < 0.95 V 24 V > 14.74 V < 3.78 V